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Summary. We develop a doubly robust estimation of generalized partial linear models for longitudinal data with dropouts.
Our method extends the highly efficient aggregate unbiased estimating function approach proposed in Qu et al. (2010) to
a doubly robust one in the sense that under missing at random (MAR), our estimator is consistent when either the linear
conditional mean condition is satisfied or a model for the dropout process is correctly specified. We begin with a generalized
linear model for the marginal mean, and then move forward to a generalized partial linear model, allowing for nonparametric
covariate effect by using the regression spline smoothing approximation. We establish the asymptotic theory for the proposed
method and use simulation studies to compare its finite sample performance with that of Qu’s method, the complete-case
generalized estimating equation (GEE) and the inverse-probability weighted GEE. The proposed method is finally illustrated
using data from a longitudinal cohort study.
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1. Introduction
Missing data induced by dropouts are common in longi-
tudinal studies due to discontinued participation or other
loss to follow-up. In our motivating example in Section 6,
we use data from a longitudinal cohort study of rheuma-
toid arthritis patients (Symmons et al., 1994) to investigate
how the repeatedly measured outcome, the Health Assess-
ment Questionnaire (HAQ) score, is associated with baseline
covariates and disease duration. At baseline, 994 subjects
were included in the study sample. During the following
five scheduled visits, dropouts occurred due to subject with-
drawals or loss to follow-up, resulting in reduced numbers of
reported HAQ measurements over follow-up. At the end of 5
years, there remained only 672 subjects. It is well recognized
that in general the GEE approach is in its basic form valid
only under missing completely at random (MCAR), which
means that missingness is independent of both observed and
unobserved data. To relax this strong assumption, advanced
statistical methods concerning the modifications of GEE
have been developed to deal with missing data under less
restrictive assumptions such as missing at random (MAR),
which means that the missingness does not depend on unob-
served data (Rubin, 1976). Among them, Robins et al. (1995)
proposed an inverse probability weighted (IPW) general-
ized estimating equations approach for repeated outcomes in
the presence of missing response data and further discussed

augmentation terms in their Section 6 to construct more effi-
cient estimators; Rotnitzky et al. (1998) proposed augmented
inverse probability weighted (AIPW) estimators in missing
data models to improve estimation efficiency over the IPW
methods; Paik (1997) proposed the mean imputation and
the multiple imputation methods for longitudinal data with
dropout.

Some extensions of the AIPW method were also developed
including doubly robust (DR) estimators (Bang and Robins,
2005; Seaman and Copas, 2009), and their properties have
been well studied (Tan, 2010; Rotnitzky et al., 2012). The
implementation of DR estimation usually requires estimat-
ing the conditional mean of the outcome given both observed
responses and covariates in the augmentation term. One pop-
ular way to do this is to postulate a parametric model for
its conditional distribution and the conditional mean can be
then obtained analytically (Carpenter et al., 2006; Shardell
et al., 2014). Tan (2010) reviewed several DR estimators
involving parametric modeling of the conditional mean, and
considered DR estimation based on the restricted nonpara-
metric likelihood. All of the aforementioned methods require
either parametric or nonparametric modeling of the condi-
tional mean or the conditional distribution. However, it may
be difficult in practice to decide which variables should be
included in the conditional model and to decide their proper
functional forms (e.g., linear or quadratic) for parametric
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modeling. For nonparametric modeling, technical challenges
such as curse of dimensionality usually arise.

Recently, Qu et al. (2010) developed a new method to
handle MAR dropouts based on the best linear approxi-
mation of the full data efficient scores. Their method does
not require modeling the missing probability or imputing
the missing response based on assumed models if their lin-
ear conditional mean (LCM) condition holds. As Qu et al.
(2010) noted, the difference between the LCM condition
and the imputation method is that while the latter just
plugs in predicted values based on an assumed imputa-
tion model, the former calculates the conditional mean by
using the intrinsic correlation relation between observed and
missing responses. Rather than filling in the missing val-
ues and treating them as if they were observed, the method
proposed in Qu et al. (2010) is closer to an expectation–
maximization (EM) type of algorithms. The use of the LCM
condition is particularly advantageous in certain situations
where the correct specification for the imputation model is
difficult. Moreover, Qu et al. (2010)’s method has wide appli-
cations as the LCM condition holds or approximately holds
for a large class of response distributions such as elliptical
distributions and bivariate binary distributions. However, sit-
uations do exist when the LCM is not satisfied, motivating
us to extend their method to allow violation of the LCM
condition.

On the other hand, we consider the generalized par-
tial linear models (GPLM) framework for longitudinal data
as GPLM is more flexible than generalized linear mod-
els (GLM) to capture nonlinear association between the
response and covariates. In our motivating example, previ-
ous research indeed suggested that the relationship between
the mean HAQ score and the disease duration is non-
linear. The nonparametric function can be approximated
by a linear combination of regression splines that is then
included as a part of the covariate vector to obtain statis-
tical inference as in GLM; see, for example, He et al. (2005).
However, so far there is only limited work on GPLM for
incomplete longitudinal data. Among them, Chen and Zhou
(2013) incorporated population-level information through an
empirical likelihood-based method and approximated the
nonparametric part using local linear method; Qin et al.
(2015) considered robust estimation in the presence of outliers
and used regression splines to estimate the nonparametric
function.

In this article, we aim to develop DR estimator for GPLM
in the analysis of longitudinal data with monotone missing
responses due to dropout. The proposed estimator is doubly
robust in that it is consistent when either Qu et al. (2010)’s
LCM condition holds or a propensity score model for the
dropout process is correctly specified. The basic idea in con-
structing DR AIPW estimators is similar to many existing
methods in the literature, such as Tsiatis et al. (2011), in
the sense that the augmentation term is based on the condi-
tional expectation of residuals given both covariates and the
observed response history. Tsiatis et al. (2011) constructed
a special doubly robust estimating equation that is optimal
when missing data probability is modeled correctly and the
conditional model in the augmented term may be incorrect.
They suggested a possible way (i.e., specifying a model for the

part of the joint distribution of the full data) to obtain the
conditional expectation involved in their augmentation term.
Specifically, in their numerical studies, the calculation of the
conditional expectation is actually based on the assumption
of multivariate normal distribution. Our method, on the other
hand, focuses on enhancing robustness of Qu et al. (2010)’s
method against the violation of the LCM condition and gives
technical details in the calculation of the augmentation term
based on the LCM condition. Moreover, to the best of our
knowledge, there is no existing research considering doubly
robust estimators for GPLM with incomplete longitudinal
data.

The article is organized as follows. Section 2 introduces
the models and proposes a doubly robust estimating equa-
tion approach. We start with the GLM for the marginal
mean of response and then extend it to the GPLM frame-
work. Section 3 shows the asymptotic properties of the
proposed estimators. Simulation studies and a sensitivity
analysis are presented in Section 4 and 5 to evaluate the
performance of the proposed method. Real data analysis is
given in Section 6 and we end with concluding remarks in
Section 7.

2. Model

2.1. Generalized Linear Model and Dropout Model

Consider a longitudinal study consisting of n subjects with
m observations over time for each subject. Let Yij be the
response for the ith subject at the jth observation, Xij be
the p-dimensional covariate vector. For simplicity, let Yi =
(Yi1, . . . , Yim)T , Xi = (Xi1, . . . , Xim)T , and �i denote the covari-
ance matrix of Yi. Let E(Yij|Xi) = μij, var(Yij) = φν(μij), where
φ is a scale parameter and ν(·) is a known variance function.
First, we introduce the following generalized linear marginal
mean model

E(Yij|Xi) = f (XT
ijβ0), i = 1, . . . , n, j = 1, . . . , m, (1)

where β0 is a p-dimensional vector of regression parame-
ters and f (·) is the inverse of the link function between the
response and covariates. We assume E(Yij|Xi) = E(Yij|Xij),
which is a necessary condition for the GEE estimator to
be consistent in the context of longitudinal data (Pepe and
Anderson, 1994).

Next, we describe the model for the dropout process. Let
the missing indicator Rij be 1 if Yij is observed, and 0 oth-
erwise. Without loss of generality, we assume Ri1 = 1 for
each subject. Consider the MAR mechanism for the dropout
process. Here, MAR means that for given covariates, the
conditional distribution of the missing data indicator Ri =
(Ri1, . . . , Rim)T , fRi

(ri|Xi, Yi), only depends on Xi and the
observed component of Yi denoted by Yo

i . Dropout means the
missing process is monotone, that is, Rij = 0 implies Rik = 0
for all k ≥ j.

Let pij = P(Rij = 1|Ri,j−1 = 1, Xi, Yi), j ≥ 2, and

ωij = P(Rij = 1|Xi, Yi). It is obvious that ωij = ∏j

k=2
pik.

We denote the response history up to (but not including)
time point j by H

y

ij = {Yi1, . . . , Yi,j−1}. A common logistic
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regression model for the dropout process is

ln
pij

1 − pij

= ZT
ij �0, (2)

where Zij is the vector consisting of the covariates Xi and the
observed response history H

y

ij; and �0 is the regression param-
eter. Let Qi denote the random dropout time for subject i,
and qi be its observed value for i = 1, . . . , n. Define Li(�) =
(1 − piqi

)
∏qi−1

k=2
pik, if qi ≤ m; otherwise, Li(�) = ∏m

k=2
pik,

where pik is determined by model (2). Then the estimator
�̂ of �0 can be obtained by solving

G�(�) =
n∑

i=1

G�,i(�) = 0, (3)

where G�,i(�) = ∂logLi(�)

∂�
.

2.2. The Proposed Method under GLM

Let Yi = (YoT

i , YmT

i )T be a decomposition of the response vec-
tor into observed, Yo

i , and missing, Ym
i , variables. Qu et al.

(2010) proposed the following quasilikelihood equations under
MAR,

n∑
i=1

μ̇i�
−1
i E(Yi − μi|Yo

i , Xi) = 0, (4)

where μi = f (Xiβ) is the mean of Yi, and μ̇i = ∂μi/∂β. They
considered the LCM condition, which means that E(Ym

i |Yo
i )

is a linear function of Yo
i . Denote �i =

(
�11

i �12
i

�21
i �22

i

)
, where

�11
i , �22

i are the variance of Yo
i and Ym

i , and �12
i = (�21

i )T is

the covariance of these two. Let (Yi − μi) = (YoT

i − μoT

i , YmT

i −
μmT

i )T be a decomposition of the residuals into observed and
unobserved components. Under the LCM condition, the fol-
lowing equation can be obtained

E(Ym
i − μm

i |Yo
i , Xi) = �21

i (�11
i )−1(Yo

i − μo
i ). (5)

Note that under the LCM condition, it is unnecessary to spec-
ify the conditional distribution of Ym

i given Yo
i and Xi, which

may be difficult to be correctly specified or to be calculated,
particularly in the context of longitudinal data. In practice,
�i needs to be estimated by using observed data. Qu et al.
(2010) suggested specifying the covariance matrices using
regression parameters β and additional covariance parame-
ters ρ that are common to all �i. They proposed an unbiased
complete data score for ρ in the GEE model as ei(ρ) =∑

a≤b
∂

∂ρ
σab

i (ρ)
[
σab

i (ρ) − (Yia − μia)(Yib − μib)
]
, where σab

i is the
abth element of �i. They also noted that if one adds an
additional constant conditional variance (CCV) assumption,
which means that the conditional covariance of any two
unobserved observations yia and yib given an observed yid is
constant over the choice of yid , the projection of this estimat-
ing function onto the observed data can be calculated directly.

In other words, if both the LCM and CCV conditions hold,

E{(Yia − μia)(Yib − μib)|Yo
i , Xi, �i}

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(Yia − μia)(Yib − μib) if both Yia and Yib are observed,

(Y∗
ia − μia)(Yib − μib) if Yia is missing and Yib is observed,

(Yia − μia)(Y
∗
ib − μib) if Yia is observed and Yib is missing,[

�∗22
i

]
ab

+ (Y∗
ia − μia)(Y

∗
ib − μib) if both Yia and Yib are

missing

(6)

where Y ∗
ia, Y ∗

ib are predicted responses based on the LCM, and
�∗22

i = �22
i − �21

i (�11
i )−1�12

i .
To widen the application, we extend Qu et al.

(2010)’s method to be DR by introducing a propen-
sity score model. Let Ỹ

j

i = (Yi1, . . . , Yi,j−1)
T and μ̃

j

i be
its expectation, for j = 2, . . . , m. Denote Ẽ(Yi − μi) =
(E∗(Yo

i − μo
i )

T , EYm
i

|Xi,Y
o
i
(Ym

i − μm
i )T )T , where E∗(Yo

i − μo
i ) =

(Yi1 − μi1, EYi2|Xi,Ỹ
2
i
(Yi2 − μi2), . . . , EYivi

|Xi,Ỹ
vi
i
(Yivi

− μivi
))T ,

and vi is the number of observed values in Yi. We propose
doubly robust estimating equations as follows

n∑
i=1

{μ̇i�
−1
i Wi(Yi − μi) + μ̇i�

−1
i (Ii − Wi)Ẽ(Yi − μi)} = 0, (7)

where Wi is the diagonal matrix with elements Rij/ωij, and
Ii is the identity matrix of the same dimension as Wi. It is
clear that Ẽ(Yi − μi) is in fact the conditional expectation
of residuals given both covariates and the observed response
history up to, but not including, the current time point.

Denote cov

(
Ỹ

j

i − μ̃
j

i

Yij − μij

)
= �̃

j

i =
(

�̃
j11
i �̃

j12
i

�̃
j21
i �̃

j22
i

)
, where �̃

j11
i ,

�̃
j22
i are the variance of Ỹ

j

i and Yij, and �̃
j12
i (which is

also the transpose of �̃
j21
i ) is the covariance of these two.

Under the LCM condition, we have E
Yij |Xi,Ỹ

j

i

(Yij − μij) =
�̃

j21
i (�̃

j11
i )−1(Ỹ

j

i − μ̃
j

i ). The double robustness of the proposed
estimator is shown in the Web Appendix.

Remark 1: If we simply use equation (5) to construct dou-
bly robust estimating equations, that is,

∑n

i=1
{μ̇i�

−1
i Wi(Yi −

μi) + μ̇i�
−1
i (Ii − Wi)E(Yi − μi|Yo

i , Xi)} = 0, the resulting esti-
mating equations would reduce to equation (4) and the double
robustness property can not be achieved.

2.3. Extension to Generalized Partial Linear Model

We now extend the proposed DR estimator for GLM to
the GPLM framework, allowing nonlinearity in the marginal
mean model. We consider a case similar to that in Sec-
tion 2.1 and assume that both covariates Xij and Tij are always
observed. For simplicity, we denote Ti = (Ti1, . . . , Tim)T . We
add a nonparametric covariate effect to the original mean
model (1)

E(Yij|Xi, Ti) = f (XT
ijβ0 + g0(Tij)), i = 1, . . . , n, j = 1, . . . , m,

(8)
where g0(·) is an unknown smooth function. Now our goal is
to estimate both β0 and g0(·).
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Assume that the domain of Tij is confined to the inter-
val [0, 1]. Let 0 = s0 < s1, . . . , skn

< skn+1 = 1 be a partition
of [0, 1]. Taking {si} as knots, we can get Nk = kn + l nor-
malized B-spline basis functions of order l, denoted by
{B1(t), . . . , BNk

(t)}. Then g0(t) can be approximated by
π(t)T α0, where π(t) = (B1(t), . . . , BNk

(t))T and α0 ∈ RNk is the
vector of spline coefficients. This linearizes the regression
model (8) and we have

ηij(θ0) = f−1(μij(θ0)) = XT
ijβ0 + πT

ijα0 = DT
ijθ0,

where Dij = (XT
ij, π

T
ij)

T , πij = π(Tij), and θ0 = (βT
0 , αT

0)T is the
combined regression parameters. Following He et al. (2005),
we use cubic splines of order 4 and calculate the sample quan-
tiles of {Tij} as the knots. The number of the internal knots kn

is taken to be the integer part of F1/5
n , where Fn is the number

of distinct values of {Tij}. This choice is consistent with the
asymptotic results given in Section 3. Now the nonparamet-
ric function is linearized so that any algorithm designed for
the linear models can be directly applied to the partial linear
models.

The construction of the dropout model is similar: ln
pij

1−pij
=

Z̃T
ij �0, where Z̃ij is the vector consisting of the information

of Xi, Ti, and the observed response history H
y

ij. Using the
likelihood method, the estimator �̂ of �0 can be obtained by
solving equation (3).

Following the same idea in constructing doubly robust esti-
mating equations under GLM, we propose doubly robust
estimating equations for GPLM as follows:

n∑
i=1

Di�
T
i (μi(θ))�

−1
i hi(μi(θ), �) = 0,

where Di = (DT
i1, . . . , D

T
im), �i(μi(θ)) = diag{μ̇i1(θ), . . . , μ̇im

(θ)}, μ̇ denotes the first derivative of f (·) evaluated
at Diθ, hi(μi(θ), �) = Wi(Yi − μi) + (Ii − Wi)Ẽ(Yi − μi). The
arguments for the double robustness are similar to those in
Section 2.2 and are omitted here. The estimating equations
can be solved through Newton–Raphson iterative algorithm.
Denote the final estimator by θ̂ = (β̂T , α̂T )T . Then the esti-
mated regression coefficients and nonparametric function are
β̂ and ĝ(t) = πT (t)α̂ respectively.

3. Asymptotic Properties

We first introduce some notations and then establish the
asymptotic properties of the proposed estimator. Let �i =
�i(μi(θ)), �i = �i(μi(θ)), and hi = hi(μi(θ), �). Let
Mi = (πi1, . . . , πim)T and M = (MT

1 , . . . , MT
n )T , �i = �T

i �−1
i

E{ ∂

∂μi
hi}�i and � = diag{�1, . . . , �n}. Let P = M(MT �M)−1

MT �, X = (XT
1 , . . . , XT

n )T , and X∗ = (X∗T
1 , . . . , X∗T

n )T =
(I − P)X, where I is the identity matrix. Let
Bi = X∗T

i �T
i �−1

i hi − [
∑n

i=1
X∗T

i �T
i �−1

i
∂

∂�
hi(μi, �)] · [ ∂

∂�
G�(�)]−1

G�,i(�). We denote the value of �i evaluated at the true μi

and �0 by �0,i and use notations B0,i and X∗
0,i in a similar

fashion.
Under the regularity conditions (C.1)–(C.9) given in the

Web Appendix, the asymptotic properties of the proposed
estimators can be established. Specifically, Theorem 1 shows

the asymptotic normality of the proposed estimator for regres-
sion coefficients β̂ and shows that the proposed estimator for
the nonparametric function can achieve the optimal rate of
convergence under the smoothing condition (C.4).

Theorem 1. Assume that conditions (C.1)–(C.9) hold. If
the number of knots kn ≈ n1/(2r+1) where r is defined in (C.4)
in the Appendix, then

1

n

n∑
i=1

(ĝ(ti) − g0(ti))
2 = Op(n

− 2r
2r+1 ),

√
n(β̂ − β0) → N(0, K−1BK−1),

where K and B are some positive definite matrix
such that 1

n
Kn → K, 1

n
Bn → B in probability, with

Kn = ∑n

i=1
X∗T

0,i�0,iX
∗
0,i and Bn = ∑n

i=1
B0,iB

T
0,i.

The proof of Theorem 1 is given in the Web Appendix.
Following Theorem 2 in Qin and Zhu (2007), the covariance
matrix can be consistently estimated by K̂−1B̂K̂−1, where
K̂ = 1

n

∑n

i=1
X∗T

i �iX
∗
i , B̂ = 1

n

∑n

i=1
BiB

T
i with all the involved

quantities evaluated at θ̂ and �̂.

4. Simulation Study

We carried out a simulation study to compare the per-
formances of the proposed method with those of the
complete-case GEE, the IPW GEE (Robins et al., 1995) and
Qu’s method (Qu et al., 2010). The covariance or correlation
matrix involved in the proposed method was estimated using
the same technique as mentioned in Section 2.2. We calcu-
lated the bias, the standard error (SE), and the mean square
error (MSE) for β̂, as well as the integrated mean square error
(IMSE) for ĝ(·) through Monte Carlo simulations.

We considered a true partial linear model

μij = XT
ijβ0 + 0.5 exp(0.1Tij), i = 1, . . . , n, j = 1, . . . , m,

where β0 = 1. The covariates were generated as follows: Xij =
uij + b1,ij, Tij = uij + b2,ij with uij, b1,ij, and b2,ij being indepen-
dently drawn from a uniform distribution on (−0.5, 0.5). The
random error ei = (ei1, . . . , eim)T was generated from a mul-
tivariate normal distribution with mean zero and covariance
matrix Ri(ρ)σ2, where Ri(ρ) is the correlation matrix cho-
sen to be first order autoregressive (AR1) with ρ = 0.6 and
σ2 = 1. The sample size is n = 600 with m = 6.

The missing indicators Rij were generated from the true
dropout model

ln
pij

1 − pij

=�0 + �1 Yij−1+ �2 Xij, (9)

where (�0, �1, �2)
T is taken to be (2.6, 1.0, −1.0)T , indicating

that 15% of subjects have missing data.
We considered the following five scenarios:

S1: there is no misspecification.
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S2: the LCM is satisfied but the dropout model is mis-
specified by excluding Xij when estimating propensity
scores.

S3: the dropout model is correct but the LCM is violated
with the random errors ei generated from a log-normal
distribution.

S4: the LCM is violated as in S3 and the dropout model is
misspecified as in S2.

S5: the dropout process is missing not at random (MNAR),
that is, ln

pij

1−pij
=�0 + �1 Yi,j−1+ �2 Xij+ �3 Yij with (�0

, �1, �2, �3)
T taken to be (2.6, 1.0, −1.0, 0.5)T . The

working dropout model for estimation is model (9).

More specifically, we considered the violation of LCM con-
dition as follows. We first generated e

′
i such that log

(
e

′
i

) =(
log(e

′
i1), . . . , log(e

′
im)

)T ∼ N (0m×1, Ri(ρ)σ2), where Ri(ρ) is
AR1 with ρ = 0.6 and σ2 = 1.3, and then obtained ei by cen-
tering e

′
i to be zero mean.

Table 1 summarizes the simulation results based on 500
replications for continuous outcomes. It shows that the
proposed method enjoys a DR property. When the LCM con-
dition holds, Qu’s method and the proposed method have

almost equally good performances, except that the latter has
a slightly larger standard error. This may be due to the fact
that the proposed approach involves estimating the weight,
which will induce more variability. In the case that the LCM
is violated but the dropout model is correct, the proposed
method gives much smaller bias, standard error and MSE for
β̂ and much smaller IMSE for ĝ(·) than Qu’s method. Inter-
estingly, when the LCM condition is violated and the dropout
model is misspecified (S4), the DR estimator has the best per-
formance among all the estimators in terms of the bias, the
standard error, the MSE, and the IMSE. It is also seen that
the complete-case GEE, which completely ignores the impact
of missing data, gives the largest biases, MSEs and IMSEs
in all scenarios. Besides, the estimated standard errors for β̂

based on 500 replications are close to those obtained from
asymptotic approximations, which indicates that the large-
sample estimate of the variance is satisfactory. Simulation
results of S5 shows that when MAR is violated, estimates from
the four methods all deviate from the truth, as is indicated
by large estimation biases and MSEs for β̂ and large IMSEs
for ĝ(·). We also conducted simulations for binary outcomes
and the findings are similar to the continuous case. See Web
Appendix for detailed descriptions.

Table 1
Simulation results for continuous outcome

β0 = 1

BIAS ESE SE MSE IMSE

S1
GEE-C 0.0291 0.0388 0.0403 0.0025 0.0047
GEE-W 0.0010 0.0404 0.0420 0.0018 0.0027
Qu 0.0001 0.0371 0.0388 0.0015 0.0024
DR-PLM 0.0007 0.0390 0.0403 0.0016 0.0026

S2
GEE-C 0.0291 0.0388 0.0403 0.0025 0.0047
GEE-W 0.0221 0.0404 0.0422 0.0023 0.0027
Qu 0.0001 0.0371 0.0388 0.0015 0.0024
DR-PLM 0.0007 0.0387 0.0403 0.0016 0.0026

S3
GEE-C 0.0848 0.1486 0.1559 0.0314 0.0508
GEE-W 0.0021 0.1344 0.1395 0.0194 0.0270
Qu 0.0258 0.1369 0.1418 0.0207 0.0279
DR-PLM 0.0044 0.1221 0.1253 0.0157 0.0248

S4
GEE-C 0.0848 0.1486 0.1559 0.0314 0.0508
GEE-W 0.0629 0.1355 0.1409 0.0238 0.0272
Qu 0.0258 0.1369 0.1418 0.0207 0.0279
DR-PLM 0.0238 0.1229 0.1263 0.0165 0.0248

S5
GEE-C 0.0306 0.0387 0.0392 0.0025 0.0081
GEE-W 0.0098 0.0406 0.0410 0.0018 0.0038
Qu 0.0103 0.0369 0.0379 0.0015 0.0031
DR-PLM 0.0117 0.0392 0.0400 0.0017 0.0034

Note: SE, standard error; ESE, estimated standard error from asymptotic theory; MSE, mean square error; IMSE, integrated
MSE; GEE-C, complete-case GEE; GEE-W, IPW GEE; Qu, Qu’s method; DR-PLM, the proposed method.
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Figure 1. Sensitivity analysis of the proposed method. Under MNAR, (a), (c) display the average estimate of β0 (dotted curves) and
its 95% CI as �3 changes, for continuous and discrete outcome, respectively. The true value of β0 is indicated by the solid lines. (b), (d)
display the IMSE of ĝ(·) for continuous and discrete outcome, respectively.

5. Sensitivity Analysis

Exploring sensitivity to unverifiable missing data assumptions
is important in the analysis of incomplete data (Daniels and
Hogan, 2008). In this section, we carried out a sensitivity anal-
ysis to assess the robustness of the proposed method when
the underlying MAR assumption is violated. Similar to Yi
et al. (2012), we considered the missing indicator Rij generated
from ln

pij

1−pij
=�0 + �1 Yi,j−1+ �2 Xij+ �3 Yij and examined the

sensitivity of estimation β̂ and ĝ(·) with the change of the
sensitivity parameter �3. Note that �3= 0 indicates a MAR
scenario and �3 �= 0 corresponds to MNAR scenarios. We used
model (9) as our working propensity score model in the esti-
mation.

Let �3 vary from (−1, 1.5), representing a wide range of
scenarios. The estimation results for β̂ and the IMSE of ĝ(·)
for continuous outcomes are displayed in Figure 1a and b,
respectively. Similar analyses are applied to binary outcomes
and the results are shown in Figure 1c and d. They show that
as �3 gradually moves away from 0 (the MAR assumption
is violated), the estimates tend to deviate from the true β0

and the true g0(·), as is indicated by the increasing bias of
β̂ and the increasing IMSE of ĝ(·). Meanwhile, it is also seen
that within a proper range of �3, the estimates are close to
the true ones, demonstrating the robustness of the proposed
method.

6. Application to Real Data

We apply the proposed method to a longitudinal cohort study
of rheumatoid arthritis patients (Symmons et al., 1994). The
study sample includes 994 patients recruited to the cohort
between 1990 and 1994 who had early rheumatoid arthritis
at baseline (Norton et al., 2014). The response variable is
the HAQ score, which is a widely used measure of functional
disability in rheumatoid arthritis patients and ranges from 0
(best) to 3 (worst). For each subject, HAQ was repeatedly

measured at baseline (year 0), year 1, year 2, year 3, year
4, and year 5. All subjects (N = 994) reported their HAQ at
baseline, but during the follow up, dropouts occurred, result-
ing to a decreasing number, namely 943 after 1 year, 864 after
2 years, 828 after 3 years, 716 after 4 years, and 672 after 5
years, of reported HAQ scores.

As for the covariates, we included gender (X1 = 1 if female;
or 0 if male), age at disease onset (X2), c-reaction protein
(X3), number of swollen joints (X4), number of tender joints
(X5), rheumatic factor (X6 = 1 if positive; or 0 if negative),
anti-cyclic citrullinated peptide antibody (anti-CCP) (X7 = 1
if positive; or 0 if negative), and disease duration (in years)
from symptom onset to current assessment (T ). Among these
covariates, X1–X7 are time-independent baseline measure-
ments and T is time-varying. We investigate how the mean
of the longitudinal response HAQ is associated with baseline
covariates X1, X2, . . . , X7 and changes with time variable T .
Previous epidemiological research suggested that the mean
HAQ score over time is J-shaped with an initial improvement
after registration to the primary care based cohort shortly fol-
lowed by starting treatment in patients with early rheumatoid
arthritis (Norton et al., 2014). It motivates us to consider a
partial linear model by incorporating a nonlinear relationship
between the response and disease duration T ,

E(HAQ|X1, X2, X3, X4, X5, X6, X7, T ) =
β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β6X6 + β7X7 + g(T )

(10)

where g(·) is an unknown smooth function. We used a four-
order regression spline with the knots-selection procedure
given in Section 2.3 to approximate g(·). More specifically,
we select the knots using the sample quantiles of T . Since T

has 2938 distinct values, the number of knots is chosen to be
4, which is the integer part of 29381/5.
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Table 2
Regression coefficient estimates in analysis of rheumatoid arthritis data

X1 X2 X3 X4 X5 X6 X7

GEE-C
EST 0.2832 0.0113 0.0029 0.0032 0.0251 0.0096 0.1846
ESE 0.0388 0.0012 0.0008 0.0030 0.0021 0.0458 0.0504
95%CIL 0.2071 0.0090 0.0013 −0.0027 0.0210 −0.0802 0.0858
95%CIU 0.3593 0.0136 0.0046 0.0091 0.0292 0.0995 0.2835

GEE-W
EST 0.2906 0.0117 0.0027 0.0030 0.0252 0.0068 0.2009
ESE 0.0416 0.0013 0.0009 0.0032 0.0022 0.0482 0.0528
95%CIL 0.2090 0.0092 0.0010 −0.0032 0.0208 −0.0877 0.0974
95%CIU 0.3722 0.0142 0.0044 0.0092 0.0296 0.1013 0.3045

Qu
EST 0.2475 0.0110 0.0039 0.0035 0.0253 0.0087 0.1538
ESE 0.0370 0.0011 0.0008 0.0029 0.0020 0.0447 0.0488
95%CIL 0.1750 0.0087 0.0024 −0.0021 0.0213 −0.0791 0.0581
95%CIU 0.3200 0.0132 0.0055 0.0091 0.0293 0.0964 0.2495

DR-PLM
EST 0.2488 0.0111 0.0039 0.0034 0.0254 0.0105 0.1574
ESE 0.0371 0.0011 0.0008 0.0029 0.0020 0.0450 0.0490
95%CIL 0.1760 0.0088 0.0023 −0.0022 0.0214 −0.0776 0.0613
95%CIU 0.3216 0.0133 0.0055 0.0090 0.0294 0.0986 0.2535

Note: EST, parameter estimation; ESE, estimated standard error; 95%CIU , upper bound of 95% confidence interval; 95%CIL,
lower bound of 95% confidence interval.

We modeled the dropout process by ln
pij

1−pij
=�0 + �1 Zij,

where Zij could include variables observed up to time point
j. Determining which variables to include is somewhat sub-
jective and should be in consultation with subject-matter
experts. We included baseline covariates and HAQi,j−1 in Zij

as this is the only time-varying variable measured in this
study. We find that a subject with a higher HAQ score at
an earlier time point or a male may be more likely to drop-
out, although their coefficient estimators are not statistically
significant.

Table 2 presents a comparison of estimators for the regres-
sion parameters in model (10) along with their standard errors
and 95% confidence intervals among the complete-case GEE,
the weighted GEE, Qu’s method, and the proposed method.
All four methods select X1, X2, X3, X5, X7 as significant
predictors for the longitudinal functional disability outcome
HAQ. The proposed doubly robust method and Qu’s method
give similar estimates, but the complete-case GEE and the
weighted GEE give different estimates for regression parame-
ters. It implies that the latter two methods may overestimate
the impact of gender (X1) and anti-CCP (X7) but underes-
timate the effect of c-reactive protein (X3). Figure 2 shows
a comparison of the estimated smooth function g(·). We see
that the estimated effects of disease duration from the four
methods are all decreasing within the first 2 years from dis-
ease onset and are then increasing for a couple of years before
it reaches a peak. This is clinically reasonable as patients usu-
ally get better after registering to the primary care cohort and
starting with treatments but their outcomes then get worse
as the disease progresses.

0 1 2 3 4 5 6 7 8
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Figure 2. The estimated function on T. The dot-dashed,
dashed, solid, dotted lines represent the curves estimated by GEE-
C, GEE-W, Qu and the proposed DR-PLM methods respectively.

7. Conclusions

We extend Qu’s method and propose a DR estimation for
GPLM in the analysis of longitudinal data with monotone
missing responses due to dropout. Similar to many other
existing DR methods, our proposed estimator also has an
AIPW estimating equation form and involves in the aug-
mentation the conditional expectation of residuals given both
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Doubly Robust Estimation in GPLM with Dropouts 1139

covariates and observed responses. However, our method dif-
fers from existing literature on several grounds. First, we
use the LCM condition in the construction of doubly robust
estimating equations. Instead of modeling the conditional
distribution or plugging in predicted values based on an
assumed imputation model for missing responses for the aug-
mentation construction, the LCM condition incorporates the
intrinsic correlation between observed and missing responses
and enables us to simplify the procedure of constructing the
augmentation term. More appealingly, the LCM condition
holds or approximately holds under a large class of response
distributions. Second, we consider the GPLM framework for
longitudinal data and use B splines to approximate the non-
linear function. Although it brings challenges in establishing
the asymptotic theory due to an infinite-dimensional problem,
it is computationally easy to implement as the nonparametric
part is linearized. To the best of our knowledge, so far there is
no work concerning DR estimators for GPLM for longitudinal
data with dropouts.

Further extensions of the proposed method may be of inter-
est. One may consider a robust DR estimator against outliers
in the analysis of longitudinal data with dropouts. Other
future work may be concerned with measurement errors in
the covariates, which are common in some longitudinal studies
and would introduce bias to the analysis.

8. Supplementary Materials

Example data and code and Web Appendix referenced in
Sections 2.2, 3, and 4, are available with this article at the
Biometrics website on Wiley Online Library.
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